If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+24r-576=0
a = 1; b = 24; c = -576;
Δ = b2-4ac
Δ = 242-4·1·(-576)
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24\sqrt{5}}{2*1}=\frac{-24-24\sqrt{5}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24\sqrt{5}}{2*1}=\frac{-24+24\sqrt{5}}{2} $
| 8+x/2=5 | | -1(2x-4)=4-2x | | 3/8(×+4/5)=-3/8(x-5) | | -x-13=-1( | | -3x+2=-7x-12 | | 317e−4=31 | | 8u+32=5(u+1) | | x-10/5=10 | | 7x-3x+11=5(x+1)-2 | | 3(a-4)=2(a-2) | | 2=2r–2 | | 1.2m–3.6=–0.6m | | 3(x-4)=7x+24 | | 3/8(m−2/9)=43/4 | | 3/8(x+4/5)=-3/8(x-5) | | 9x+30=5x+3 | | 4x-+2=4 | | 2/9x+2=5 | | -8(-8+x)=8(1-8x) | | 4x+7=3(x+5)-2 | | 3^x=1/9. | | 3.6y-3.2=15.8 | | -8-x=12+3x | | z+60=4z | | 9x-21=-3(x-5) | | (-p-1)^2-4(1)(p)=0 | | –1/5b–2/5=–2 | | a+36=4a | | 3(x+6)=2x+21 | | 3x+-7=5x+2 | | X+3/8=5/x+3 | | 9(2x-6)-2(3-x)=4x-18 |